TECHNICAL BULLETIN INCOLOY®ALLOY 945X®: HIGH STRENGTH AND CORROSION RESISTANCE FOR YOUR MOST CHALLENGING APPLICATIONS

INCOLOY®ALLOY 945X®

INCOLOY® alloy 945X® (UNS N09946) is an age hardenable nickel-iron-chromium alloy with additions of molybdenum, copper, niobium, titanium, and aluminum. The alloy chemical composition, listed in Table 1, is designed to provide a combination of high strength and excellent corrosion resistance. The nickel content is sufficient to provide protection against chloride-ion stress corrosion cracking. The nickel, in conjunction with the molybdenum and copper, also gives outstanding general corrosion resistance to reducing chemicals. The molybdenum aids resistance to pitting and crevice corrosion. The alloy's high chromium content provides resistance to oxidizing environments. The niobium, titanium and aluminum are added to provide high volume fraction of sub-micron size uniformly distributed Ni₃(NbTiAl)-type gamma prime and Ni₃(TiNbAI)-type gamma double prime precipitates. Their precipitates are responsible for high strength of the alloy by virtue of a dispersion strengthening mechanism. A special precipitation hardening (age hardening) heat treatment is developed to provide required strength.

INCOLOY® alloy 945X® is suitable for various applications requiring a combination of high strength and corrosion resistance. Because of the alloy's resistance to sulfide stress corrosion cracking and stress corrosion cracking in H₂S containing environments, the alloy has been used in oil and natural gas components for down-hole and surface gaswell including SSSV, MWE/LWD tools, liner hangers, packers, components for BOPs and more. One of the primary uses of alloy 945X® is OCTG and coupling stock. Further, the alloy is suitable to use in landing nipples, tool joints, gas lift, fasteners, pump shafting and high strength piping systems.

Based on extensive corrosion testing, INCOLOY® alloy 945X® has been incorporated in NACE MR0175 / ISO-15156-3 for up to NACE level VII at max hardness level of 42Rc.

Table 1: Limiting chemical composition (UNS N09946) of INCOLOY® alloy 945X®, wt%.

Nickel	50.0- 55.0
Chromium	19.5-22.5
Iron of of of of	Balance
Molybdenum	3.0 - 4.0
Niobium	3.5-4.5
Copper	1.5 - 3.0
Titanium	0.5 – 2.5
Aluminum	0.01 – 0.7
Manganese	1.0 max
Silicon 🖌 🦿 🎸	0.5 max
Sulfur	0.03 max
Phosphorous	0.03 max
Carbon	0.005 to 0.030

PHYSICAL PROPERTIES

Some physical properties of INCOLOY® alloy 945X® can be seen in Table 2. The valves shown in this table are based on room temperatures except for the melting range value. Tables 3 and 4 provide co-efficient of expansion and specific heat data over a range of temperatures. Thermal conductivity and modulus of elasticity over range of temperatures can be seen in Tables 5 and 6.

Table 2: Physical Properties of INCOLOY® alloy 945X®

Density,	lbs/in ³ g/cm ³	0.298 8.265
Melting Range,	°F °C	2323 - 2424 1273 - 1329
Electrical Resistivity,	ohm.cmil/ft	682 MΩ-m 1.10
Permeability at 200 oersteds (1	5.9 kA/m)	= 1.002
Young's Modulus,	10 ⁶ psi GPa	29.4 202.7

Table 3: Coefficient of thermal expansion. The values show mean coefficient of liner expansion between 77°F (25°C) and the listed temperature.

Temperature		Coefficient of The	rmal Expansion
°F J	ి °C ్	in/in/°F x 10-6	cm/cm/°C x10⁻6
200	93	746	13 43 🧹 🦿
300	149	762	13 72
400	204	7 69	13 84
500	260	782	14 08
600	316	790	14 22
700	371	800	14 40
800	427 3	8 09	of 14 56 of of
900	482	8 18	14 72 🧹 🦿
1000	538	8 28	14 90
1100	593	8 44	15 19
1200	649	8 60	15 48
1300	704	8 80	15 84
1400	760	9 04	16 27
1500	816 3	ð 929 d	of 16 72 of of
1600	871	9 48	17 06

Specific Heat [emperature °C Btu/lb-°F J/Kg-°C 70 21 0 104 436 200 93 0 108 452 300 149 0 1 1 0 461 400 204 0 1 1 3 473 500 260 0 1 1 5 482 600 316 0 1 1 7 490 700 371 0 1 1 9 498 800 427 0 121 507 900 482 515 0 123 1000 538 0 128 536 1100 593 0 139 582 649 582 1200 0 139 1300 704 0 154 645 760 737 1400 0 176 816 750 1500 0 179 1600 871 0 183 766 1700 927 0 146 611 1800 982 0 146 611 1900 1038 0 146 611 2000 0 152 1093 637 2100 0 154 1149 645

5:

4

Temperature		Thermal Conductivity	
°F	°C	BTU-in/ft²-h- °F	W/m-°C
70	21	74	10.6
200	93	81	117
400	204	94	13 5
600	316	105	15 1
800	427	116	167
1000	538	128	185
1200	649	147	21 2
1400	760	151	21 8
1600	871	158	22.6
1800	982	162	23 4
2000	1093	176	25 4

erature		Young's Modulus	
	°C	10 ³ ksi	GPa
	24	29 43	203
	93	29 15	201
	149	28 67	198
	204	28 53	197
	260	27 72	191
	316	27 32	188
	371	26 85	185
	427	26 33	182
	482	25 98	179
	538	25 42	175
	593	24 92	172
	649	24 40	168
	704	23 84	164
	760	23 27	161

6:

Tempe

°F

70

200

300

400

500

600

700

800

900

1000

1100

1200

1300

MECHANICAL PROPERTIES

Alloy 945X® is supplied in the form of rod, tube and wire. Annealing and age hardening parameters are given below.

Annealing

1850°F-1950°F (1010°C-1066°C) for 1/2 hour to 4 hours, water quench.

Age Hardening

1300°F-1350°F (704°C-732°C) / 6-8 hours, furnace cool 50° F-100°F (26-56 °C) / h to 1125°F -1175°F (607°C -635°C), hold at this temperature for 6-8 hours, air cool.

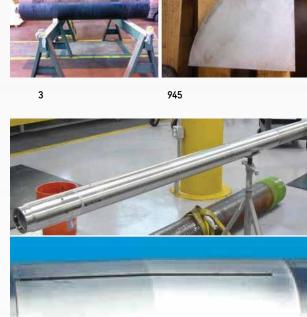
Alloy 945X® can easily be made to ultra large rod of diameters up to 22 inch (560 mm). Table 7 shows properties of a 22-inch (560 mm) diameter rod at center, mid-radius and near-edge. Figure 2 shows this 22-inch (560 mm) rod weighing over 11,000 lbs (5000 Kg) and a macro-etched quarter of it showing a rather homogenous material. The derating factor, drop in yield strength at high temperature, is an important parameter as materials in O&G wells are used at elevated temperatures. Table 8 and 9 shows de-rating factors of alloy 945X® rods product. Different diameter heats were picked up from mill production and tested at different temperatures. Table 10 shows de-rating factor for tubing and Table 11 shows tensile versus compressive yield strength of tubing from room temperature to 550°F (288°C).

560

-75°

Test loc	YS, ksi (MPa)	UTS, ksi (MPa)	% El	% RA	Impact, Strength ft-lbs (Joules)	120 - Hardness range, Rc	Grain Size ASTM #
	157 5 1086	187 2 1291	23 3	41 2	Charles Charles	Statement Statement	35
	164 6 1135	187 4 1291	21 1	37 4	47 64	38 - 41 2	25
and and	164 1 1132	190 0 1310	196	37 1	States States	Station Station 3	2

945


11000

5000

8.

9: -Rod dia., inche (mm) 95 35 75

2

22-

560

0:						
Heat/lot	Size, inches	Test temp	Yield strength, ksi	Tensile strength, ksi	% El	% RA
1	95		164 0	195 0	21 5	26 3
3755 - 16		300	148 2	174 5	173	29 3
		350	150 5	174 2	177	30 1
		400	144 8	170 1	193	35 7
		450	144 4	175 5	25 0	78 9
		500	144 7	166 6	195	34 2
2	35		148 7	183 0	34 0	53 0
0035 - 13		300	134 8	175 1	27 5	50 2
		350	129 3	159 9	31 4	55 5
		400	134 3	167 7	28 3	55 4
		450	131 1	159 7	28 9	59 2
		500	134 5	167 7	29 9	56 1
3	75		160 8	187 3	23 7	31 2
3755 - 15		250	147 6	182 2	21 0	36 0
		350	147 9	172 8	20 8	31 6
		450	143 1	169 5	22 7	34 9
4	8		157 7	185 7	23 6	45 1
3755 - 14		300	144 8	168 8	27 0	49 0
		350	144 8	168 8	26 2	49 1
		400	143 5	166 9	25 0	49 0
		450	151 4	180 6	24 0	478

Heat	RT, ksi	300ºF (149ºC)	350ºF (177ºC)	400ºF (204ºC)	450ºF (232ºC)	500≌F (260≌C)
1	164 0	148 2 0 90	150 5 0 92	144 8 0 88	144 4 0 88	144 7 0 88
2	148 7	134 8 0 91	129 3 0 87	134 3 0 90	131 1 0 88	134 5 0 91
3	160 8		147 9 0 92		143 1 0 89	
4	157 7	144 8 0 92	144 8 0 92	143 5 0 91		
		0 91	0 91	0 90	0 88	0 90

10: -		3 5-	89	
0 449- 1	14			

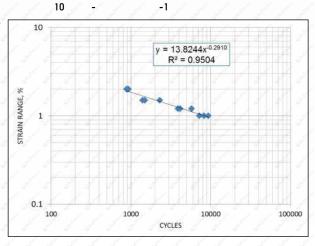
Heat number	RT, ksi	350ºF (177ºC), ksi	450ºF (232ºC), ksi	550ºF (288ºC), ksi
5167	171 4	158 6 0 93	152 0 0 89	150 6 0 88
5115	166 6	155 9 0 94	151 1 0 91	150 9 0 91
5158	161 5	159 9 0 99	149 0 0 92	144 5 0 90
5117	165 2	158 4 0 96	154 7 0 94	151 2 0 92
5168	164 3	152 6 0 93	149 8 0 91	147 9 0 90
5154	160 8	151 5 0 94	148 7 0 93	148 1 0 92
Star Star Star	Stern Stern	0 95	0 92	0 91

11: 945 35-89 0 449-114 550 288

S. No	Heat# / piece#	Temperature	Compressive YS, ksi	Tensile YS, ksi	Compressive /tensile
1 Stal	5167-2	State State State St	177 5	171 4	1 04
	Station" Station" C	350 177	171 7	158 6	1 08
	Station Station	450 232	168 4	152 0	111
a testing and	Stational stational	550 288	164 6	150 6	1 10
2	5115-3	Alterna and and and and and a	1769	166 6	1 06
	Str. St. C	350 177	166 5	155 9	1 08
	Ster Ster C	450 232	163 5	151 1	1.08
	Sterra Sterra	550 288	161 9	150 9	1 07
3	5158-2	Salina" Staffan Staffan S	173 4	161 5	1 08
	Station Station	350 177	164 9	159 9	1 03
Statement Statement Statement	450 232	160 1	149 0	1 08	
	Straff Straff	550 288	159 1	144 5	1 10
4	5117-2	S OF OF ST	1786	165 2	1 10
	Steel Steel C	350 177	174 1	158 4	1 08
	Steller Steller	450 232	164 3	154 7	1 10
	Station Station	550 288	161 1	151 2	1 06
5	5168-2	States States States States	175 6	164 3	1 07
	testingers testingers	350 177	165 4	152 6	1 08
	G. G. C	450 232	163 2	149 8	1 09
Ster.	Ster Ster 2	550 288	161 7	147 9	1 09
6	5154-2	st str str s	172 3	160 8	1 07
	Station Station	350 177	163 4 🗸 🗸	151 5	1 08
	Station Station	450 232	161 0	1487	1 08
	taliant taliant	550 288	160 5	148 1	1 08

Fracture Mechanics Properties

Table 12 shows yield strength of alloy 945X® at various temperatures. This heat was used to evaluate fracture mechanics properties. De-rating factor at a temperature is determined by dividing yield strength at temperature by yield strength at room temperature. Table 13 shows fracture toughness, KJIC in C-R orientation. Tests were done using compact tension samples in lab air at various temperatures. Strain controlled low cycle fatigue (LCF) test were done at 450°F (232°C) as per ASTM E606-4. A sinusoidal waveform at a frequency of 10 CPM was used. R-ratio for all was -1.


Table 12: Yield strength of alloy 945X® at various temperatures. Listed values represent averages of 3 tests.

S. No	Test Temperature	Yield strength, ksi (MPa)	De-rating Factor
1		151 3 1043	and a set and a set and
2	200° 93°	145 0 1000	0 96
3 🗸	300° 149°	145 0 1000	096
4	400° 204°	138 8 952	0 92
5	450° 232°	138 8 952	0 92

S. No	Test Temperature	Fracture Toughness values, ksi Vin	Average Fracture Toughnessvalues, ksi Vin
1	States and	221/209	215
2	200° 93°	228/237/238	234
3	300° 149°	224 / 233 / 240	232
4	400° 204°	222 / 227 / 235	228
5	450° 232°	201 / 207 / 210	206

450° 232°

606-4

CORROSION RESISTANCE

Concentrations of Nickel, Chromium, Molybdenum, and Copper are optimized to provide excellent corrosion resistance in oil and gas environments for Galvanically -Induced Hydrogen Stress Cracking (GHSC), Sulfide Stress Cracking (SSC), and Stress Corrosion Cracking (SCC). Corrosion resistance of INCOLOY alloy 945X® under these types of corrosion mechanisms is illustrated by the tests below.

NACE Qualification testing

Extensive testing was conducted to obtain NACE MR0175/ ISO 15156-3:2009 approval for UNS N99046, alloy 945X.

Table 14 lists mechanical properties of 3 commercial heats used for testing in NACE MR0175 / ISO 15156 - 3 for levels VII and level VI-450°F (232°C). Test results of triplicate samples from these 3 heats are given in tables 15 and 16 respectively. Tests were conducted in accordance with NACE TM0177-2004, method C - C-Ring tests. The dimensions of the samples were: 2 inch (51 mm) OD, 0.15inch (3.8 mm) wall thickness, 0.95-inch (24.1 mm) width. The results are based on 20X visual observations. Photographs showing C-rings exposed to level VII and level VI-450°F are shown in Figure 4 and 5 respectively. Test results for GHSC and SSC

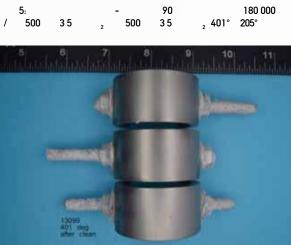

are given in Table 17. Samples were nominally of gauge diameter 0.25 inch (6.34 mm) and gauge length 1 inch (25.4 mm). The results are based on 30X visual observations.

Table 14 lists mechanical properties of the heats used for SCC, SSC and GHSC. YS, UTS, El and RA stand for yield strength, tensile strength, elongation, and reduction-of-area respectively.

Heat No.	Rod dia., in. (mm)	YS ksi (MPa)	UTS, ksi (MPa)	El (%)	RA (%)	Average impact If-lbs (Joules)	Hard- ness, Rc
4057 -13	51 130	164 1 1131	197 9 1358	25 0	48 8	71 7 97	44
4571 -12	8 203	167 1 1152	200 0 1379	23 3	43 3	41 2 56	46
4571 -13	10 254	166 4 1147	200 0 1379	22 4	38 5	34 8 47	44

Table 15: C-ring test results in NACE level VII. The environmental conditions are as follows: 3.5 MPa (500 psia) H₂S, 3.5 MPa (500 psia) CO₂, 25 wt% (180,000 mg/L Cl) NaCl, at 205°C (401°F). The applied stress was 100% of the actual yield stress at temperature.

ple	Applied Stress at 205°C (401°F), ksi (MPa)	Results
57 -13 1	145 8 1005	90
57 -13 2	145 8 1005	90
57 -13 3	145 8 1005	90
71 -12 1	150 0 1034	90
71 -12 2	150 0 1034	90
71 -12 3	150 0 1034	90
71 -13 1	149 4 1030	90
71 -13 2	149 4 1030	90
71 -3 3	149 4 1030	90

16: -			-4	50° 232°		
				:35	500	
2	35	500	220	% 139 000	×1 5× 5×	
232°	450°			100%		

Sample		Applied Stress, ksi (MPa) at 232°C (450°F)	Results
4057	-13 1	145 9 1006	90
4057	-13 2	145 9 1006	90
4057	-13 3	145 9 1006	ో 90 [ో] రో రో
4571	-12 1	151 9 1047	J J 90 J J
4571	-12 2	151 9 1047	90
4571	-12 3	151 9 1047	90
4571	-13 1	148 9 1027	90
4571	-13 2	148 9 1027	90
4571	-13 3	148 9 1027	o 90 o o

6: - 90 139 000 / 500 3 5 ₂ 500 3 5 ₂ 450° 232°

17:				
0177-2004	-			Ψ

90%

Sample	Applied Stress	Steel Coupled	Results
4057 -13 1	147 7	Contraction and the second	30
4057 -13 2	1477		30
4057 -13 3	1477		30
4571 -12 1	J50 4	51 1 51	తో తో 30లో తో తో
4571 -12 2	150 4		<u></u> 30
4571 -12 3	150 4	and the second	30
4571 -13 1	149 8	and stated to be a	30
4571 -13 2	149 8		30
4571 -13 3	149 8		30

W The composition of NACE solution A is 5% NaCl plus 0.5% glacial aceticacid in distilled or ionized water. As per the NACE standard, tests were carried out at room temperature (24°C, 75°F) at H2S pressure of 100 kPa. Start and finish pH of the solution was 2.7 and 3.6 respectively.

Testing in Sour	Sulfur Contain	ing Environn	nent		
18		3		19): -
100%	300° 149°	350° 177°	90	3 2 60	04
100%	105 000		100 77	_	
₂ 600 42	₂ 125 000	/		5- Sampl	e
/				4154	4 -12
120				4154	4 -12 :
			1	4154	4 -12
	95047	17		3888	8 -11
1	-	:2		3888	8 -11 :
51 015-	38	09	25- 241	3888	8 -11 :
	20			19 4040	0 -11
2 0	300° 14	9° 350°	177°	4040	0 -11 :
7 3	50° 177°	-	-	4040	0 -11
	7	7			
-	-		-	20): -
21 0177-2004	-			125 000	D /
Ψ				Sampl	le

18:

	-	-					
Heat No.	Rod dia., inches (mm)	YS ksi (MPa)	UTS, ksi (MPa)	EI (%	RA (%)	Average impact If-Ibs (Joules)	Hard- ness, Rc
4154 -12	65 165	146 6 1011	179 3 1236	26 9	51 6	70 9 96	41
3888 -11	65 165	1475 1017	181 6 1252	26 0	44 6	61 2 83	41
4040 -11	10 254	152 4 1051	180 6 1252	26 6	50 6	79 0 107	42

90%

-	300°	149°	90
	1	100	77
42	125 000	/	

	Applied stress 300°F (149°C)	Results
-12 1	138 5	90
-12 2	138 5	90
-12 3	138 5	90
-11 1	141 4	90
-11 2	141 4	90
-11 3	141 4	90
-11 1	143 9	90
-11 2	143 9	90
-11 3	143 9	90

100%

20: - 350° 177° 90 100% 1100 77 ₂ 600 42 ₂

	Applied stress350°F(177°C	Results
-12 1	133 4	90
-12 2	133 4	90
-12 3	133 4	90
-11 1	134 2	90
-11 2	134 2	90
-11 3	134 2	90
-11 1	138 7	90
-11 2	138 7	90
-11 3	138 7	90

7: - 350° 177° 90 100% 1100 77 ₂ 600 42 ₂125 000 /

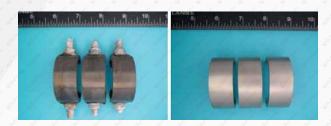


Table 21: Testing for GHSC and SSC were done in accordance with TM0177-2004, method A - Tensile test, in NACE solution A^{ψ} . One set of samples was coupled to steel via the stressing bolt and other set were tested without steel coupling. Applied stress was 90% of actual yield strength.

Sample	Applied Stress	Steel Coupl	ed	Results
4154 -12	146 6	S Str. Str.		30
4154 -12	146.6	of the start	Ster Ster	ో ు 30 ో
4154 -12	146.6	of the other other	State State	J J J J J
3888 -11	147 5	Sterner Sterner Sterr	Stellor Stellor	30 Jan 30
3888 -11	147 5	Stranger Stationer Stati	Televen Autor	30
3888 -11	147 5	Transferry and the second	and and transferred and the set	30
4040 -11	152 4	and the set	a contraction	30
4040 -11	152 4	S St. St.		30
4040 -11	152 4	State State	Stell Stell	J J 30 J

5% 05% 24° 75° 27 36

Slow Strain Rate Testing (SSRT)

SSRT of alloy 945X® rod and tubular products were done in level VII as per TM0198-2004. Mechanical properties of the rod and tubular tested are given in Table 22. Results are listed in Tables 23 to 26. It should be mentioned that SSRT is used for Ni-base precipitation strengthened alloys to evaluate relative performance, no pass / fail criteria is established for these materials.

Table 22: Mechanical properties of the materials on which slow strain rate tests were done as per NACE TM0198-2004. The YS, UTS, EI and RA denote yield strength, tensile stress, elongation and reduction-of-area respectively. Impact toughness was tested in transverse orientation at -75°F (-59°C).

Rod/Tube Size, inches (mm)	YS, ksi (MPa)	UTS, ksi (MPa)	% El	% RA	Impact, ft-lbs (Joules)	Max Hard- ness, Rc	Grain Size ASTN #
3590	146 5 1010	177 4 1223	29 4	52 5	66 6 90	41 1	3 345
10 254	160 0 1103	184 8 1274	23 9	474	577 78	41 3	3
42 107 09 23	168 7 1163	193 6 1335	22.6	48 5	51 5 70 0	44 3	55

Table 23: Slow strain rate (SSRT) testing of 3.50-inch (90 mm) rod of alloy 945X® in NACE MR0175 / ISO 15156-3 level VII in accordance with TM0177-2004, method A. The environment was 3500 kPa (500 psia) H₂S, 3500 kPa (500 psia) CO₂, 25 wt%

(180,000 mg/L Cl) NaCl, at 205°C (400°F) at strain rate of 4 x 10⁻⁶ in/in/sec. Samples were nominally of diameter 0.15 inch (3.8 mm) and gauge length 1 inch (25.4 mm). TTF, El, RA, Env and Avg denote time-to-failure, elongation, tensile stress, reduction-of-area, environment and average respectively.

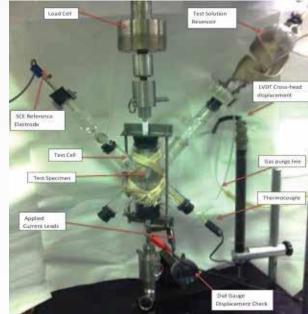
						S. Aller	
Test	TTF (h)	TTF Ratio	% El	% El Ratio	% RA	% RA Ratio	Secondary Cracking
and the frame the frame	178	States - Antimation	25 6	-	51 6	- Julian	feet and stationard at
and stationed stationed	159	State - State	22.9		51 3	en-	and the second second
al cal cal	169		24 3	- /	51 5	-	
Street Street	128	0 76	184	0 76	36 7	071	den den de
Start Start	147	0 87	21 2	0 87	364	071	Steel Steel St
Status Status	12.9	0 77	186	0 77	36 6	071	Stealing Stealing St
and alternation alternation		0 80		0 80	1 ²	071	Anterna Station of

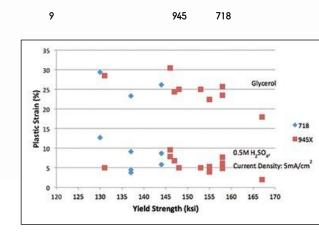
Table 24: Slow strain rate (SSRT) testing of 10-inch (254 mm) rod of alloy 945X® in NACE MR0175 / ISO 15156-3 level VII in accordance with TM0177-2004, method A. The environment was 3500 kPa (500 psia) H₂S, 3500 kPa (500 psia) CO₂, 25 wt% (180,000 mg/L CI) NaCI, at 205°C (400°F) at strain rate of 4 x 10⁻⁶ in/in/sec. Samples were nominally of diameter 0.15 inch (3.8 mm)

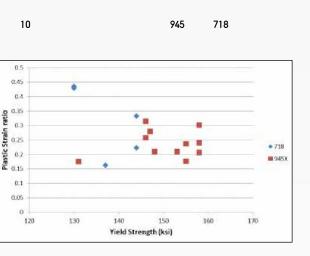
in/in/sec. Samples were nominally of diameter 0.15 inch (3.8 mm) and gauge length 1 inch (25.4 mm). TTF, El, RA, Env and Avg denote time-to-failure, elongation, tensile stress, reduction-of-area, environment and average respectively.

Test	TTF (h)	TTF Ratio	% EI	% EL Ratio	% RA	% RA Ratio	Secondary Cracking
Star Star	168	-	242	- Str.	44.6	- 34	5 ^{11_} 3 ¹⁰ 3 ¹⁰
and the state	150	- strate	216	ell- Shell	479	- State	Staff" Staff" Sta
States States	15.9	- Station	22.9	eres Sheres	463	rear States	States States Sta
	146	0 92	21 0	0 92	33 0	071	Stafford Stafford Sta
	126	0 79	184	0 80	362	0 78	fattered statement state
	13 1	0 75	173	0 76	364	0 79	And
5 5 S		0 82	3° 3	0 83	3 3 - 7	076	3 - 3 - 3 - 7 - 7

Table 25: Slow strain rate (SSRT) testing of 168.7 ksi yield strength mechanical tube of alloy 945X® of OD 4.20" (107 mm) and wall thickness 0.90" (23 mm) in NACE MR0175 / ISO 15156-3 level VII in accordance with TM0177-2004, method A. The rest of the mechanical properties are listed in Table 10. The environment was 3500 kPa (500 psia) H₂S, 3500 kPa (500 psia) CO₂, 25 wt% (180,000 mg/L Cl) NaCl, at 205°C (400°F) at strain rate of 4 x 10⁻⁶ in/in/sec. Samples were nominally of diameter 0.15 inch (3.8 mm) and gauge length 1 inch (25.4 mm). TTF, El, RA, Env and Avg denote time-to-failure, elongation, reduction-of-area, environment and average respectively.


Test	TTF (h)	TTF Ratio	% El	% EL Ratio	% RA	% RA Ratio	Secondary Cracking
of the first of the first	157	- States	179	ten - Stelen	53 0	- Station	State States Sta
and Shalinger Shalinger	123	- steller	136	Carrow Station	51 8	- Televin	Star shire at
and astrony astrony	131	- salinger	145	and comments	51 9	en-	Stream extension est
and trading tradi	137	- mart	153	ration frage	Strand S	r- sam	Trand Trank
Stranger and	134	0 98	143	0 93	41 8	0 80	S St St
Ster Ster	15 7	1 15	177	1 15	43 8	0 84	5
Sterlin Sterlin	147	1 07	160	1 04	41 8	0 80	Star Star Sta
Staffart Staffart	and the state	1 07	and the at	1 04	and the state	0 81	Star aller all

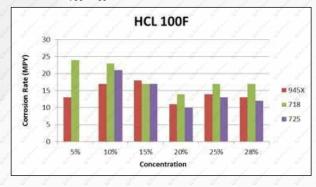

Hydrogen Embrittlement


Materials in O&G wells are prone to hydrogen embrittlement. To evaluate hydrogen embrittlement resistance, tests were done using a specially designed apparatus shown in Figure 8. SSRT sub-size samples were used as per NACE TM0198. In a dearated solution of 0.5M H_2SO_4 at 40°C

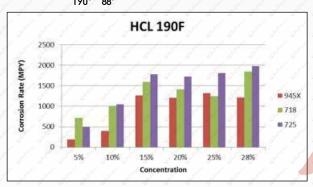
(104°F), a current density of 5mA/cm² was applied at strain rate 10⁻⁶ s⁻¹. Figure 9 shows plastic strains of alloy 945X® and 718 in glycerol and in the listed environment and Figure 10 shows plastic strain ratio of alloy 945X® and 718. These ratios are obtained by dividing plastic strain in environment by plastic strain in glycerol. It shows that both alloys have comparable hydrogen embrittlement resistance. Further, higher yield strength tends to lower hydrogen embrittlement resistance.

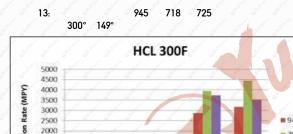
Figure 8: A specially designed apparatus used to evaluate hydrogen embrittlement resistance.

Corrosion in Aqueous Acidic Media


Materials used in petrochemical industries are tested in various acidic media to evaluate their corrosion resistance. Commercial alloys 945X®, 718 and 725 were tested at different temperatures for various concentrations of hydrochloric acid, acetic acid and formic acid for 5 days, and weight loss was monitored. Mechanical properties of tested heats are given in Table 26. Weight loss for hydrochloric acid concentrations of 5%, 10%, 15%, 20% and 25% at 100°F

(38°C), 190°F (88°C) and 300°F (149°C) are shown in Figures 11 to 13 respectively. Acetic acid concentrations of 5% and 9% at temperatures 100°F (38°C), 190°F (88°C) and 300°F (149°C) did not show any weight loss for all these alloys. Similarly, formic acid concentrations of 2% and 4% did not show any detectable weight loss at temperatures 190°F (88°C) and 300°F (149°C).


Table 26: Mechanical properties of the materials on which acidic media corrosion tests were done. The YS, UTS, El and RA denote yield strength, tensile stress, elongation and reduction-of-area respectively. Impact toughness was tested in transverse orientation at -75°F (-59°C).


rod ch	YS, ksi (MPa)	UTS, ksi (MPa)	% El	% RA	Impact, ft-lbs (Joules)	Max Hard- ness, Rc	Grain Size, ASTM#
	159 3 1098	183 6 1266	23 0	41 9	46 6 63 2	42	25
	129 2 891	174 7 1205	28 8	44 2	61 3 83 1	379	4
2	141 0 972	186 8 1288	28 0	41 6	53 8 73 0	398	3

11: 945 718 725 100° 38°

12: 945 718 725 190° 88°

1500

500

5.96

10%

15%

Concentration

20%

S 1000

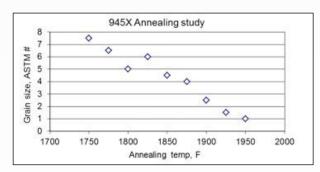
Resistance to Localized Corrosion

Acid - halide conditions such as those commonly encountered in oil and gas service tend to induce localized corrosion of nickel alloy and stainless steel components. Pitting and crevice corrosion are especially damaging as they can cause perforation in a very short period of time. So, while equipment may appear to be undamaged as there is no loss of material by general corrosion, leaks can occur due to this very aggressive form of attack. NiCrMo and FeNiCrMo materials have been shown to demonstrate resistance

to localized attack. By virtue of its contents of chromium and molybdenum, alloy 945X® offers good resistance. The resistance of an alloy to localized attack can be estimated by its pitting resistance equivalency number (PREN). This number is calculated based upon the composition of the material. Alloys with higher PREN values are normally found to more resistant than alloys with lower values. The resistance of alloys to localized corrosion can be measured by the ASTM G48 test procedure. These corrosion tests expose alloys in an acidified ferric chloride solution and establish values for critical pitting temperature (CPT) and critical crevice temperature (CCT). Values for PREN* and CPT for alloy 945X® are 31 and 45°C respectively. * PREN = %Cr + 3.3 (%Mo + 0.5W) + 16N

MACHINABILITY AND HOT/COLD WORKABILITY

INCOLOY® alloy 945X® is an age hardenable alloy with good machinability in solution annealed or aged conditions. Rigid tools with positive rake angles and techniques that minimize work hardening of the material are required. Best results are obtained by rough machining before age hardening and finishing after heat treatment. Machinability of alloy 945X® is comparable to alloy 718.


Alloy 945X® can be hot/cold worked similar to other conventional Ni-base super alloys. Hot working range of INCOLOY® alloy 945X® is 1700°F to 2100°F (930°C to 1150°C). Hot working characteristics of alloy 945X® are very similar to alloy 718.

ANNEALING AND AGE HARDENING

Alloy 945X® can be annealed in the temperature range of 1750°F (954°C) to 1950°F (1066°C). For best microstructure and properties the alloy should be annealed in the range

of 1850°F (1010°C) to 1950°F (1066°C). Figure 14 shows grain size versus annealing temperature of a hot rolled material. Hardness of alloys 945X® on age hardening in the temperature range of 1250°F (678°C) to 1400°F (760°C) is shown in Figure 15. Recommended age hardening of alloy 945X® is 1300°F-1350°F (704°C-732°C) / 6-8 hours, furnace cool 50°F-100°F (26-56°C)/h to 1125°F-1175°F (607°C-635°C), hold at this temperature for 6-8 hours, air cool.

Figure 14: Grain size versus annealing temperature of alloy 945X®

15: 945 1250 1400

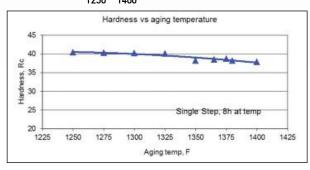
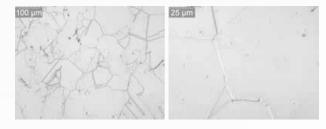



Figure 16: Optical photographs of 22-inch (560 mm) diameter rod of alloy 945X® at center in longitudinal orientation.

METALLOGRAPHY

Conventional grinding and polishing techniques for Ni-based alloys are adequate for INCOLOLY® alloy 945X®. To reveal the microstructure, the recommended procedure is to swab etch using Seven Acids etchant (Hydrochloric acid = 300ml, Nitric acid = 60ml, Phosphoric acid = 60 ml, Hydrofloric acid = 30ml, Sulfuric acid = 30ml, Anhydrous Iron Chloride = 30ml. Acetic acid = 60ml. and water = 300ml) and Kallings etchant (Methanol = 100ml, Cupric Chloride = 5gm, and Hydrochloric acid = 100 ml). Typical microstructure of annealed plus aged material is shown in Figures 16 and 17. Age hardening heat treatment of annealed material precipitates sub-micron size Ni₃ (TiNbAI)-type gamma prime and Ni₃ (NbTiAl)-type gamma double prime, which are responsible for high strength of alloy 945X®. These precipitates are too small to be seen by optical microscopy.

> 20KU X200 4181

10-

JOINING

945

945 725

725

27 28 945

945 945 945 29

Steamond Stationer Ste													
					States States State	at at	State.	Street			al a fair a f		
						Alan States	front profession	Steffester		Statute .	al an	and the second	Ste
				and Stateman States	a barren garan d	$\mathbf{\Omega}$		A frank	States	and a		States	
ble 27: Me	chanical I	Proper	ties INCOL	OY® alloy	/ 945X® GTA	A		1		1			
	INCOL OV	10 01E	YO Eillor M	otal		No. St.		to Train	tool and	1.50	. V		
elded with	INCOLOY	′® 945	SX® Filler M	etal	/ 945X® GTA		June States	a Chairman			States of		
ensile Test	0.2% YS	UTS	Elongation	Red of	Failure		Surray Surray	Surrey State			ser or server or		
d de	0.2% YS (ksi)	UTS (ksi)	Elongation (%)	Red of Area(%)			54. 1				server di server di server di		
ensile Test	0.2% YS (ksi) 85 9	UTS	Elongation (%) 218	Red of Area(%) 374	Failure		and and		and a second		se ^{nter} di se ^{nter} di se ^{nter} di		
ensile Test	0.2% YS (ksi)	UTS (ksi)	Elongation (%)	Red of Area(%)	Failure				Server Street		anter de la contra d Contra de la contra d Contra de la contra d		
ensile Test	0.2% YS (ksi) 85 9	UTS (ksi) 125 3	Elongation (%) 218	Red of Area(%) 374	Failure					- 	2 *** 54 2 **** 54 2 **** 54 2 **** 54 2 *** 54		

Table 28: Mechanical Properties INCOLOY® alloy 945X® GMA-P Welded with INCOLOY 945X® Filler Metal.

Tensile Test Orientation	0.2% YS (ksi)	UTS (ksi)	Elongation (%)	Red of Area(%)	Failure Location
and and a	78 2	120 0	173	40 3	
She She She	78 2	118 8	173	30 2	ST ST ST
Staff Staff Staff	72.9	115 3	369	311	J 5 5

Table 29: Mechanical Properties INCOLOY® alloy 945X® GTA Welded with INCOLOY 945X® Filler Metal

Tensile Test Orientation	0.2% YS (ksi)	UTS (ksi)	Elongation (%)	Red of Area(%)	Hardness (HR
Trans Trans	144 0	181 8	187	32 3	40 2
31 31 31 A AN AN	146 2	182 0	20 3	41 4	367
Steel Steel St	137 2	178 1	277 🍼 🧹	36 3	38 6
States States St	138 4	1768	26 1 🧹 🦿	30.6	39.4
Station Station St	130.6	169 1	24.4	35 6	34.2
the strates and	138 0	1670	175	273	37 1

AVAILABLE PRODUCT FORMS

INCOLOY® alloy 945X® is designated as UNS N09945. The alloy is approved for use in oil and gas applications by NACE MR0175 / ISO-15156-3 for up to NACE level VI. There is a Special Metals Corporation internal specification HA 123 Rev. 3

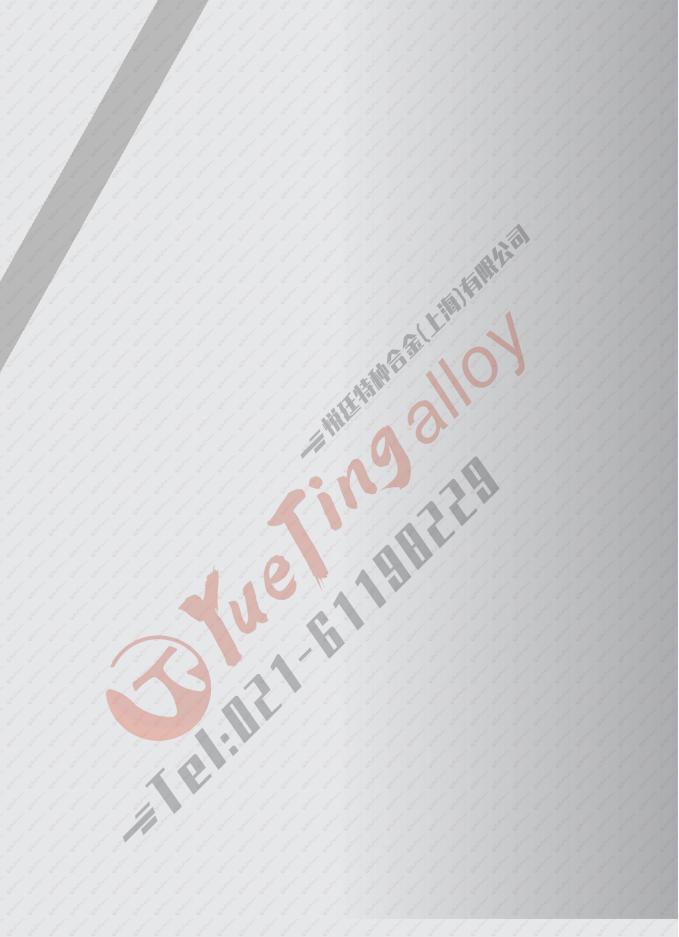
Alloy 945X® is available as a round fully annealed plus aged bar, forging stock, and tubing.

APPLICATIONS

SAFETY VALVE FLAPPER SEAT

FORGING FOR A TUBING HANGER

FLAPPER VALVE FOR A PACKER



PISTON ACTUATOR

BLOW OUT PREVENTER COMPONENT

PUSHING WHAT'S POSSIBLE IN THE ENERGY INDUSTRY

